Physics potential of a forward upgrade in ALICE: direct photons and CGC, initial conditions

Tatsuya Chujo Univ. of Tsukuba

Jun. 27, 2017

RBRC workshop

Synergies of pp and pA Collisions with an Electron-Ion Collider June 26-28, 2017, BNL

1. Introduction:

- Saturation physics at small-x
- Approach to thermalization mechanism in AA
- 2. Forward experimental results at LHC
- 3. Forward Calorimeter Project (FoCal) in ALICE
- 4. Current status
- 5. Summary

Saturation physics at small-x

At small x and small Q^2 , the parton density will become large by non-linear effects due to gluon fusion

Gluon density saturate (competing between gluon isolated splitting and gluon fusion):

Gluon Saturation, Color Glass Condensate (CGC)

CGC

Forward

Color Glass Condensate (CGC)

High energy, forward

- ① Saturated gluon state by the quantum fluctuation
- 2 Universal picture at high energy nucleus and nucleon
- 3 No clear experimental evidence for the creation of CGC yet

To find/ test CGC by experiment...

- (1) more forward
- (2) Higher energy (LHC)
- (3) p < A
- (4) cleanness of probes: (e.g.) $h < \gamma_{dir.}$

$$x_{\min} = \frac{2p_T}{\sqrt{s}} \exp(-\eta),$$

LHC forward provides an ideal experimental field for CGC

QGP thermalization mechanism

- High energy nucleus = What is the initial condition?
- Why so rapidly thermalized (t=0.6 fm/c)?
 - Instability of strong color field?
 - → need to determine the initial condition clearly.
- Find the clear evidence for CGC formation as an initial condition (or exclude it).

6

High density gluon matter ←→Hot Quark Matter

1 Evidence for CGC

- direct photon = most clean signal for CGC
- Forward direct photon: $R_{pA} \rightarrow CGC$ or not.

2 Nature of CGC

- Direct photon R_{pA}: system, multiplicity, y & p_T dep.
 - → characterize CGC size, structure, onset.

3CGC and QGP thermalization mechanism

- Size of CGC (direct photon) and QGP temperature, expansion velocity, fluctuation.
- Forward photon /hadron vs. mid. photon / hadron
 - correlation between CGC size and QGP thermalization (e-by-e)
 - → Mechanism of rapid thermalization

4 Connection to other research fields

- 「strong field」: QCD color (gluon) field vs. QED field (Neutron star)
- 「forward」: High energy cosmic rays

A. Rezaeian, PLB 718, 1058

ALICE mid (DCal, PHOS, TPC)

photon = temperature

hadron = expansion velocity

ALICE Forward

photon = CGC state

RHIC (STAR, Au+Au 200 GeV)

80 470 440 440 420 410 420 410 Δφ 1 2 3 1.5

LHC (ALICE, pPb, 5.02 TeV)

- long range Δη correlations (ridge) at RHIC and LHC.
- Also observed at high multiplicity event in small system (pp, p-Pb)
- Origin is still unknown.
- CGC (initial condition) or others?

LHC Result (1): J/ψ in pA

$$J/\psi \rightarrow \mu^+ + \mu^-$$

- Hadron suppression on forward (proton-going) side at low p_T.
- J/ψ yield: not described by nPDFs nor by a CGC calculation
- Uncertainties on:
 - Production mechanism (x sensitivity etc.)
 - Other nuclear modifications (e.g. energy loss, thermalization in pA?)

ALICE, 10.1007/JHEP02(2014)073, arXiv:1308.6726

Difficult to obtain conclusive data by hadrons only.

LHC Result (2):R_{pPb} for D⁰

Prompt D⁰ nuclear modification factor LHCb-CONF-2016-003

• Calculated as: $R_{\text{pPb}}(y, p_T) = \frac{1}{A} \times \frac{\sigma_{\text{pPb}}(y^*, p_T, \sqrt{s_{NN}})}{\sigma_{\text{pp}}(y^*, p_T, \sqrt{s_{NN}})}$, A=208

New

• D^0 cross-section in pp collision at $\sqrt{s} = 5$ TeV extrapolated using LHCb measurements at 7 and 13 TeV Nucl. Phys. B87 (2013), arXiv:1510.01707

ightharpoonup pp data at $\sqrt{s} = 5$ TeV are being analyzed, will be updated soon

MNR with CTEQ6M+EPS09NLO: Nucl. Phys. B373 (1992) 295, JHEP 10 (2003) 046, JHEP 04 (2009) 065

25/03/2016 Moriond QCD, 2016

Comparison with CGC (D meson)

1.5

0.5

0

 $c \rightarrow D$

2

3

 p_{\perp} [GeV]

arXiv:1706.06728v1, Fujii and Watanabe

 $Q_{s0,A}^2 = 2Q_{s0,p}^2$

 $Q_{s0,A}^2 = 3Q_{s0,p}^2$

 $Q_{s0,A}^2 = 4Q_{s0,p}^2$

ALICE

Isolated photons vs. hadrons

Isolated direct photons can provide strong constraints on the gluon PDFs

- LO dominant process: quarkgluon Compton.
- Quark-anti-quark annihilation contributing mostly at large x.
- NLO: At LHC, the majority of prompt photons are produced in the fragmentation process
- Fragmentation photon can be largely suppressed by the isolation cut.

→quark-gluon Compton
 process dominant, more direct
 access to the gluon PDFs and
 saturation physics

photons

R. Ichou and D. d'Enterria, Phys. Rev. D 82, 014015 (2010)

c) bremsstrahlung d) fragmentation

hadrons

Why photos?

- Cleaner observables: EM probes (direct photons, DY)
 - no final state interaction
 - well-understood process
 - well-defined kinematics
- Direct photons: large cross section
- DY at forward p-A: likely not possible

NLO pQCD calculations with shadowing (EPS09) Helenius, Eskola, Paukkunen, arXiv:1406.1689

- Hadronic observables:
 - final state modification in p-A.
 - production process uncertainties.
 - uncertainty of kinematic relation to Bjorken-x (e.g. fragmentation).
 - Best hadronic observables: open charm (e.g. D)
 - direct sensitivity to gluons
 - final state interaction?
 - x sensitivity (next slide)?

x-Sensitivity: photons vs D

x₂ distribution for forward production

- LO production from PYTHIA
- D⁰ (LHCb) vs. prompt γ (FoCal)
- prompt γ:
 - apparent peak at x ~ 10⁻⁵
 - significantly larger mean value
- Significant advantage of proposed direct photo measurement compared to charm in LHCb.

A signal of CGC: RpA for direct photons

A. Rezaeian, PLB 718, 1058

Two scenarios for forward γ production in p+A at LHC:

- Normal nuclear effects linear evolution, shadowing
- Saturation/CGC running coupling BK evolution

$$R_{pA} \equiv rac{d^3N/dp_T^3(pA)}{\langle N_{coll}
angle \cdot d^3N/dp_T^3(pp)},$$

- Strong suppression in direct γ R_{pA}.
- Signals expected at forward η , low-intermediate p_T .

ALICE FoCal Project

FoCal = Forward Calorimeter:

FoCal-E: EM Calorimeter

FoCal-H: Hadronic Calorimeter

- \bigstar 7 m away from the interaction point.
- \bigstar main challenge: separate γ/π^0 at high energy
- \bigstar Si-W calorimeter, effective granularity $\approx 1 \text{mm}^2$

- p-Pb: looking for CGC effects at small-x
 - Direct photons,
 - π⁰
 - di-hadron correlations $(\pi^0-\pi^0)$
 - jets, quarkonia
- p-p: forward particle production, baseline
 - (same as p-Pb)
- Pb-Pb: medium density at forward rapidity
 - π^0 at 3.2 < η < 4.5
 - longitudinal evolution of medium
 - provide jet quenching at forward rap., same region for J/ψ (muon arm)

FoCal project (Institutes)

Utrecht, Nikhef

Tsukuba, Tsukuba Tech, BARC, Bose, IITB, Indore, Hiroshima, Nara, CNS, Nagasaki Jammu, VECC

ORNL, Tennessee, Wayne State

Short Name	Full Name	Representative
Amsterdam	Nikhef, Amsterdam, Netherlands	M. van Leeuwen
BARC	Bhaba Atomic Research Centre, Mumbai, India	V.B. Chandratre
Bergen	University of Bergen, Bergen, Norway	D. Roehrich
Bose	Bose Institute, Kolkata, India	S. Das
Detroit	Wayne State University, Detroit, USA	J. Putschke
Hiroshima	Hiroshima University, Hiroshima, Japan	T. Sugitate
IITB	Indian Institute of Technology Bombay, Mumbai, India	R. Varma
Indore	Indian Institute of Technology Bombay, Indore, India	R. Sahoo
Jammu	Jammu University, Jammu, India	A. Bhasin
Jyväskylä	University of Jyväskylä, Jyväskylä, Finland	J. Rak
Knoxville	University of Tennessee, Knoxville, USA	K. Read
Nagasaki	Nagasaki Inst. of Applied Science, Nagasaki, Japan	K. Oyama
Nara§	Nara Women's University, Nara, Japan	M. Shimomura
Oak Ridge	Oak Ridge National Laboratory (ORNL),Oak Ridge, USA	T. Cormier
Prague	Czech Technical University of Prague, Prague, Czech Republic	V. Petracek
Sao Paulo	Universidade de Sao Paulo (USP), Sao Paulo, Brazil	M. Munhoz
Tokyo	Center of Nuclear Study (CNS), Tokyo, Japan	T. Gunji
Tsukuba	University of Tsukuba	T. Chujo
Tsukuba Tech	Tsukuba University of Technology	M. Inaba
Utrecht	Utrecht University, Utrecht, Netherlands	T. Peitzmann
VECC	Variable Energy Cyclotron Centre, Kolkata, India	T. Nayak

^{*} Note: the list of institutes expressed interests in FoCal project

Kinematic reach by FoCal

Projected uncertainty for direct γ R_{pPb}

Forward measurements at LHC access unique rage in x and Q^2 FoCal: direct photons and hadrons (π^0), jets

Others: hadronic probe only

FoCal-E prototype design

- Si/W sandwich calorimeter layer structure:
 - W absorbers (thickness 1X₀)+ Si sensors
- Longitudinal segmentation:
 - 4 segments low granularity (LG)
 - 2 segments high granularity (HG)

LG segments

- 4 (or 5) layers
- Si-pad with analog readout
- cell size 1 x 1 cm²
- longitudinally summed

HG segments

- single layer
- CMOS-pixel (MAPS*)
- pixel size $\approx 30 \times 30 \ \mu m^2$
- digitally summed in 1mm² cells

*MAPS = Monolithic Active Pixel Sensor

^{*} note: two-photon separation from $\pi 0$ decay (pT = 10 GeV/c, y = 4.5, α = 0.5) is d = 2 mm.

High Granularity (HG) Prototype, MAPS

- 4x4 cm² cross section, 28 X₀ depth
- 24 layers: W absorber + 4 MAPS each
- MIMOSA PHASE 2 chip (IPHC Strasbourg)
 - 30 µm pixels
- 640 μs integration time (needs upgrade – too slow for experiment)
- 39 M pixels total
- Test with beams at DESY, CERN PS, SPS

High Granularity (HG) Prototype, MAPS (1)

Good linearity and energy resolution (MAPS)

- different calibration for low/high energy, possibly still improve calibration.
- proof of principal of digital calorimetry works.

High Granularity (HG) Prototype, MAPS (2)

Position resolution:

calculate difference of position from

- cluster in layer 0 and
- center of gravity of shower in layers I 23

single shower position resolution obtained from width of residuals

can provide excellent two-shower separation

FoCal PAD proto type, 1 segment (ORNL, Tsukuba, CNS-Tokyo)

Test beam setup @ PS (same for SPS) in 2015

- Good linearity within ~3% from PS to SPS energies.
- Good energy resolution, probability improved by further calibration.

Low Granularity (LG) Prototype, PAD (India)

HV connector

Connector for kapton cable to FEE boards

Bias resistors and capacitors

Good linearity and energy resolution for FoCal

Summary

- Rich physics and unexplored region @ forward rapidity at LHC
 - CGC (or not), nature of CGC.
 - Strong connections to QGP thermalization mechanism, strong field, long range Δη correlations (ridge).
 - Advantage of direct photon measurement at LHC forward region.
 - FoCal project is proposed in ALICE internally.
 - R&D efforts to finalize the final design are on-going.
 - FoCal physics potential extends to: forward π⁰-π⁰ correlations, forward jet measurement by FoCal in pp, p-Pb, even in Pb-Pb.

Outlook:

- First measurement: 3 <η<4, in Run-3 (2021-2023).
- Full FoCal (3.2 <η < 5.3) in Run-4 (2026-2029).

Si-W with high position resolution EMCal:

- new technology
- could be useful for precise angler resolution at forward region in EIC

- If you are interested in, we are always welcome you, and discuss the spec you need for EIC!

Thank you!